1,451 research outputs found

    Dark energy and CMB bispectrum

    Full text link
    We consider the CMB bispectrum signal induced by structure formation through the correlation between the Integrated Sachs-Wolfe and the weak lensing effect. We investigate how the bispectrum knowledge can improve our knowledge of the most important cosmological parameters, focusing on the dark energy ones. Preliminary results suggest a consistent improvement on the estimation of dark energy abundance and on dynamical properties of the equation of state.Comment: 6 pages, 5 figures. To appear in "Impact of Gravitational Lensing on Cosmology", IAU Symposium 225, Mellier & Meylan ed

    Impact of foregrounds on Cosmic Microwave Background maps

    Full text link
    We discuss the possible impact of astrophysical foregrounds on three recent exciting results of Cosmic Microwave Background (CMB) experiments: the WMAP measurements of the temperature-polarization (TE) correlation power spectrum, the detection of CMB polarization fluctuations on degree scales by the DASI experiment, and the excess power on arcminute scales reported by the CBI and BIMA groups. A big contribution from the Galactic synchrotron emission to the TE power spectrum on large angular scales is indeed expected, in the lower frequency WMAP channels, based on current, albeit very uncertain, models; at higher frequencies the rapid decrease of the synchrotron signal may be, to some extent, compensated by polarized dust emission. Recent measurements of polarization properties of extragalactic radio sources at high radio frequency indicate that their contamination of the CMB polarization on degree scales at 30 GHz is substantially below the expected CMB E-mode amplitude. Adding the synchrotron contribution, we estimate that the overall foreground contamination of the signal detected by DASI may be significant but not dominant. The excess power on arc-min scales detected by the BIMA experiment may be due to galactic-scale Sunyaev-Zeldovich effects, if the proto-galactic gas is heated to its virial temperature and its cooling time is comparable to the Hubble time at the epoch of galaxy formation. A substantial contamination by radio sources of the signal reported by the CBI group on scales somewhat larger than BIMA's cannot be easily ruled out.Comment: 10 pages, 5 figures, to appear in proc. int. conf. "Thinking, Observing and Mining the Universe", Sorrento, Sept. 200

    What's Behind Acoustic Peaks in the Cosmic Microwave Background Anisotropies

    Get PDF
    We give a brief review of the physics of acoustic oscillations in Cosmic Microwave Background (CMB) anisotropies. As an example of the impact of their detection in cosmology, we show how the present data on CMB angular power spectrum on sub-degree scales can be used to constrain dark energy cosmological models.Comment: 6 pages, proceedings to the TAUP2001 conference, LNGS, Italy, Sept. 200

    Constraints on coupled dark energy using CMB data from WMAP and SPT

    Full text link
    We consider the case of a coupling in the dark cosmological sector, where a dark energy scalar field modifies the gravitational attraction between dark matter particles. We find that the strength of the coupling {\beta} is constrained using current Cosmic Microwave Background (CMB) data, including WMAP7 and SPT, to be less than 0.063 (0.11) at 68% (95%) confidence level. Further, we consider the additional effect of the CMB-lensing amplitude, curvature, effective number of relativistic species and massive neutrinos and show that the bound from current data on {\beta} is already strong enough to be rather stable with respect to any of these variables. The strongest effect is obtained when we allow for massive neutrinos, in which case the bound becomes slightly weaker, {\beta} < 0.084(0.14). A larger value of the effective number of relativistic degrees of freedom favors larger couplings between dark matter and dark energy as well as values of the spectral index closer to 1. Adding the present constraints on the Hubble constant, as well as from baryon acoustic oscillations and supernovae Ia, we find {\beta} < 0.050(0.074). In this case we also find an interesting likelihood peak for {\beta} = 0.041 (still compatible with 0 at 1{\sigma}). This peak comes mostly from a slight difference between the Hubble parameter HST result and the WMAP7+SPT best fit. Finally, we show that forecasts of Planck+SPT mock data can pin down the coupling to a precision of better than 1% and detect whether the marginal peak we find at small non zero coupling is a real effect.Comment: 22 pages, 17 figure

    Digital Deblurring of CMB Maps II: Asymmetric Point Spread Function

    Full text link
    In this second paper in a series dedicated to developing efficient numerical techniques for the deblurring Cosmic Microwave Background (CMB) maps, we consider the case of asymmetric point spread functions (PSF). Although conceptually this problem is not different from the symmetric case, there are important differences from the computational point of view because it is no longer possible to use some of the efficient numerical techniques that work with symmetric PSFs. We present procedures that permit the use of efficient techniques even when this condition is not met. In particular, two methods are considered: a procedure based on a Kronecker approximation technique that can be implemented with the numerical methods used with symmetric PSFs but that has the limitation of requiring only mildly asymmetric PSFs. The second is a variant of the classic Tikhonov technique that works even with very asymmetric PSFs but that requires discarding the edges of the maps. We provide details for efficient implementations of the algorithms. Their performance is tested on simulated CMB maps.Comment: 9 pages, 13 Figure

    Sub-degree CMB anisotropies from inflationary bubbles

    Get PDF
    It is well known that processes of first order phase transitions may have occurred in the inflationary era. If one or more occurred well before the end of inflation, the nucleated bubbles are stretched to large scales and the primordial power spectrum contains a scale dependent non-Gaussian component provided by the remnants of the bubbles. We predict the anisotropies in the cosmic microwave background (CMB) induced by inflationary bubbles. We build a general analytic model for describing a bubbly perturbation; we evolve each Fourier mode using the linear theory of perturbations from reheating until decoupling; we get the CMB anisotropies by considering the bubbly perturbation intersecting the last scattering surface. The CMB image of an inflationary bubble is a series of concentric isothermal rings of different color (sign of δT/T\delta T/T) on the scale of the sound horizon at decoupling (1o\le 1^{o} in the sky); the resulting anisotropy is therefore strongly non-Gaussian. The mean amplitude of δT/T\delta T/T for a bubble of size LL follows the known estimates for linear perturbations, δT/Tδρ/ρ(L/H1)2\delta T/T\simeq\delta\rho /\rho\cdot (L/H^{-1})^{2}. In particular, bubbles with size corresponding to the seeds of the observed large scale voids (tens of comoving Mpc) induce an interesting pattern of CMB anisotropies on the sub-degree angular scale, to be further investigated and compared with the forthcoming high resolution CMB maps provided by the MAP and the Planck experiments.Comment: 10 pages, 5 postscript figures, accepted by Ap.

    WMAP 3yr data with the CCA: anomalous emission and impact of component separation on the CMB power spectrum

    Full text link
    The Correlated Component Analysis (CCA) allows us to estimate how the different diffuse emissions mix in CMB experiments, exploiting also complementary information from other surveys. It is especially useful to deal with possible additional components. An application of CCA to WMAP maps assuming that only the canonical Galactic emissions are present, highlights the widespread presence of a spectrally flat "synchrotron" component, largely uncorrelated with the synchrotron template, suggesting that an additional foreground is indeed required. We have tested various spectral shapes for such component, namely a power law as expected if it is flat synchrotron, and two spectral shapes that may fit the spinning dust emission: a parabola in the logS - log(frequency) plane, and a grey body. Quality tests applied to the reconstructed CMB maps clearly disfavour two of the models. The CMB power spectra, estimated from CMB maps reconstructed exploiting the three surviving foreground models, are generally consistent with the WMAP ones, although at least one of them gives a significantly higher quadrupole moment than found by the WMAP team. Taking foreground modeling uncertainties into account, we find that the mean quadrupole amplitude for the three "good" models is less than 1 sigma below the expectation from the standard LambdaCDM model. Also the other reported deviations from model predictions are found not to be statistically significant, except for the excess power at l~40. We confirm the evidence for a marked North-South asymmetry in the large scale (l < 20) CMB anisotropies. We also present a first, albeit preliminary, all-sky map of the "anomalous" component.Comment: 14 pages, 17 figures, submitted to MNRAS, references adde

    CMB signal in WMAP 3yr data with FastICA

    Get PDF
    We present an application of the fast Independent Component Analysis (FastICA) to the WMAP 3yr data with the goal of extracting the CMB signal. We evaluate the confidence of our results by means of Monte Carlo simulations including CMB, foreground contaminations and instrumental noise specific of each WMAP frequency band. We perform a complete analysis involving all or a subset of the WMAP channels in order to select the optimal combination for CMB extraction, using the frequency scaling of the reconstructed component as a figure of merit. We found that the combination KQVW provides the best CMB frequency scaling, indicating that the low frequency foreground contamination in Q, V and W bands is better traced by the emission in the K band. The CMB angular power spectrum is recovered up to the degree scale, it is consistent within errors for all WMAP channel combination considered, and in close agreement with the WMAP 3yr results. We perform a statistical analysis of the recovered CMB pattern, and confirm the sky asymmetry reported in several previous works with independent techniques.Comment: 10 pages, 7 figures, submitted to MNRA

    Detectability of the Cross-Correlation between CMB Lensing and Stochastic GW Background from Compact Object Mergers

    Get PDF
    The anisotropies of the Stochastic Gravitational-Wave Background (SGWB), produced by merging compact binaries, constitute a possible new probe of the Large-Scale Structure (LSS). However, the significant shot noise contribution caused by the discreteness of the GW sources and the poor angular resolution of the instruments hampers the detection of the intrinsic anisotropies induced by the LSS. In this work, we investigate the potential of cross-correlating forthcoming high precision measurements of the SGWB energy density and the Cosmic Microwave Background (CMB) lensing convergence to mitigate the effect of shot noise. Combining a detailed model of stellar and galactic astrophysics with a novel framework to distribute the GW emitters in the sky, we compute the auto-and cross-correlation power spectra for the two cosmic fields, evaluate the shot noise contribution and predict the signal-to-noise ratio. The results of our analysis show that the SGWB energy density correlates significantly with the CMB lensing convergence and that the cross-correlation between these two cosmic fields reduces the impact of instrumental and shot noise. Unfortunately, the S/N is not high enough to detect the intrinsic SGWB anisotropies. Nevertheless, a network composed of both present and future generation GW interferometers, operating for at least 10 yrs, should be able to measure the shot noise contribution

    Imprints of Primordial Voids on the CMB

    Get PDF
    We generalize in several ways the results existing in the literature: a) we make use of an exact general relativistic solution for a spherical, nearly empty cavity in the matter dominated era to evaluate the null geodesics and the Sachs-Wolfe effect; b) we evaluate the magnitude of the adiabatic fluctuations of the photon-baryon plasma; c) we study the influence of the shell profile; and d) we take into account the finite thickness of the last scattering surface (LSS) and the influence of its position with respect to the void center. We find empirically an analytic approximation to the Sachs-Wolfe effect for all crossing geometries and we derive an upper limit of \approx 25 h1h^{-1} Mpc for the comoving radii of voids sitting on the LSS in order to achieve compatibility with COBE's data. As a nearly empty void has an overcomoving expansion of a factor of \approx 4 between decoupling and the present, the maximum allowed size at present is \approx 100 h1h^{-1} Mpc. On the other hand, the smallness of the comoving size relative to the sound horizon reduces strongly the adiabatic effect by Silk damping and makes it negligible. Most of the signature of primordial voids comes therefore from metric effects and consists of subdegree spots blue or red depending on whether the center lies beyond or within the LSS. In conclusion we refine and confirm earlier constraints on a power law void spectrum originated in an inflationary phase transition and capable of generating the observed large scale structure.Comment: 14 pages, 5 figures, submitted to Montly Notice
    corecore